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Current-sheet formation in incompressible electron magnetohydrodynamics
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The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the
Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For descrip-
tion of current-sheet formation from a smooth initial magnetic field, local and nonlocal nonlinear approxima-
tions are introduced and partially analyzed that are generalizations of the previously known exactly solvable
local model neglecting electron inertia.
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It is a well known fact that current sheets play exclusive
important role in plasma dynamics~see, e.g.,@1–4# and ref-
erences therein!. However, analytical study of current-shee
formation and their dissipative dynamics is a very diffic
problem in the framework of usually used nonlinear~and
also nonlocal in the incompressible limit! equations of mo-
tion of plasmas. That concerns the usual magnetohydro
namics ~MHD!, the electron magnetohydrodynami
~EMHD!, as well as the multifluid models of plasmas. So,
to this day we do not have a mathematically clear answe
the question, whether the current density will become sin
lar in a finite time or its growth can be only exponential
these systems. Numerical simulations remain to be the m
tool for obtaining quantitative results@1–7#. Therefore, an
important role for theoretical understanding of current-she
dynamics can be played by local nonlinear approximatio
that sometimes have exact solutions describing formatio
singularities. An example of such relatively simple, appro
mate differential equation for the magnetic fieldB(r ,t) is
~see, e.g.,@8# for derivation and explanation!

Bt52
c

4pe
curl@~curlB/n! 3B#. ~1!

This equation describes the motion of magnetic structure
EMHD on length scales much larger than the inertial el
tron skin depth, while the main part of the energy is conc
trated in the magnetic field, with the kinetic energy of t
electron fluid motion being much smaller. The equation~1!
has been extensively exploited, for instance, to study
penetration of magnetic field into plasmas due to the H
effect @9,10#, as well as rapid dissipation of magnetic fiel
in laboratory and astrophysical conditions@11#. The interest
to this equation is explained, in particular, by the fact th
axisymmetric configurations withBiew have been found ex
actly solvable~see@8–11#!. In this geometry, the equation o
motion is reduced to the well known one-dimensional~1D!
Hopf equation, that should be solved independently for e
value of the radial coordinate. The mechanism of singula
formation in these solutions is connected simply with bre
ing in a finite time of the magnetic field profile. The ma
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netic field itself does not become infinite, but its curl tends
the infinity at some point of the axial cross section. Inclusi
of dissipative terms into the equation stops the breaking,
instead of multivalued profile, a shock forms, the length
which increases with time. The shock is a cross section o
current sheet.

The main purpose of present work is to extend the ana
sis of such axisymmetric flows by consideration of addition
nonlinear effects caused by electron inertia. They either p
role of small corrections for long-scale flows or, when t
shock becomes narrow, change drastically the dynamical
havior by smoothing the transport velocity field. This situ
tion is quite different in comparison with the self-simila
EMHD solutions discussed in Ref.@12#. Also, the flows with
other geometrical symmetry are considered below in the
proximation~1!, when all the frozen-in magnetic lines hav
helical shapes with a same spatial period alongz direction. In
this case contours corresponding to different values of
axial component of the magnetic field rotate in a perpendi
lar plane with different angular velocities, thus producing t
shock.

Incompressible two-fluid model.Before the main consid-
eration, it is useful to recall the place of EMHD among d
ferent hydrodynamical plasma models@8#. If there are only
two kinds of particles in the plasma—negatively charg
electrons with the massm and positively charged ions with
the massM, then the most general is the two-fluid mode
which contains MHD, EMHD, and Hall MHD as specia
cases. Let the equilibrium concentration of particles of ea
sort be equal ton. If the temperature of the system is suffi
ciently large,nT@B2, then for slow vortical flows one can
neglect deviations of the concentrations fromn ~the
quasineutrality condition!, and believe the velocity fields
divergence-free in homogeneous case (“•v6)50.

Temporarily, we will not take into account dissipative pr
cesses. Thus, application of the canonical formalism
comes possible@13–15#, which makes the analysis mor
compact. With appropriate choice for the length sca
@;d15(Mc2/4pe2n)1/2# and for the mass scales (;M ),
the Lagrangian functional of the incompressible two-flu
model, in the absence of an external magnetic field, takes
form

Lm$v1,v2%5E d3k

~2p!3 F uvk
1u2

2
1m

uvk
2u2

2
1

uvk
12vk

2u2

2k2 G . ~2!
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Herem5m/M is the only dimensionless parameter rema
ing in the system. For the electron-positron plasmam51, for
the hydrogen plasmam'1/2000!1. Below we consider the
latter case. The first two terms in the expression~2! give the
kinetic energy of the ion and electron fluids, while the th
term is the energy of the magnetic field created by the flo
of electrically charged fluids. The conditions of incompre
ibility are assumed, (vk

6
•k)50.

It is important that the variation of the action function
S5*Lmdt, which is necessary for constituting the equatio
of motion, should not be performed with respect to the va
tions dv6(r ,t), but with respect to the variationsdx1(a,t)
anddx2(c,t), wherex1(a,t) andx2(c,t) are incompressible
Lagrangian mappings describing the motion of points of
ion and electron fluids, labeled by the labelsa and c. The
corresponding mathematical technique is explained, for
stance, in Refs.@16#. The equations of motion of the two
fluid incompressible system have the following structure:

]

]t

dLm

dv6~r !
5~12“D21

“ !Fv6~r !3curl
dLm

dv6~r !
G , ~3!

where the operator in the parentheses on the rhs is the
jector onto the functional space of divergence-free 3D vec
fields @13,16#. The two vector fieldsp6(r )[dLm /dv6(r )
er
g
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T
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are the canonical momenta by definition. In the Fourier r
resentation they are given by the expressions

pk
15dLm/dv2k

1 5@11 (1/k2!]vk
12

vk
2

k2
, ~4!

pk
25dLm/dv2k

2 5@m1 ~1/k2!#vk
22

vk
1

k2
. ~5!

Below, we will need the reversal relations for the velociti
through the momenta,

vk
15

~mk211!pk
11pk

2

mk2111m
, vk

25
~k211!pk

21pk
1

mk2111m
. ~6!

It is possible to reformulate the equations~3! as equations for
frozen-in vortices,

Vt
6~r !5curlFcurl

dHm

dV6~r !
3V6~r !G , ~7!

where the canonical vorticity fields are defined as the curls
the canonical momenta,V6(r ,t)[curlp6(r ,t), and also the
Hamiltonian functional of the system is calculated,
Hm$V1,V2%[E $~p1
•v1!1~p2

•v2!%dr2Lm

5E d3k

~2p!3 F ~mk211!uVk
1u21~k211!uVk

2u212~Vk
1
•V2k

2 !

2k2~mk2111m!
G . ~8!
-
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It is clear that in the problem under consideration th
are two separated dimensionless scales of inverse len
k1;1 and k2;1/l, wherel5Am is the electron inertial
skin depth~normalized tod1). Sincel2!1, we may write
with very good accuracyHm$V1,V2%'Hl$V1,V2%,
where

Hl$V1,V2%5
1

2E d3k

~2p!3
@G11~k!uVk

1u21G22~k!uVk
2u2

12G12~k!~Vk
1
•V2k

2 !#, ~9!

G11~k!5
1

k2
, G12~k!5S 1

k2
2

1

k21l22D ,

G22~k!5S 1

k2
1

1

11l2k2D . ~10!

Depending on the typical spatial scale of the vortic
several dynamical regimes are possible in this system.
e
th,

,
he

small and moderate wave number region,k,;1, corre-
sponds to the Hall MHD, and in the special limituV1

1V2u!uV1u,uV2u, we have here the usual MHD. The re
gion 1!k,;1/l, under the extra conditionuV1u!uV2u,
corresponds to the EMHD@8#. For the flows with larger typi-
cal wave numbers,k@1/l, the magnetic effects becom
relatively insignificant, and the system~9! is broken into
two weakly interacting subsystems, each of them be
approximately described by the ordinary Euleri
hydrodynamics, sinceG22(k)'1/l2k2, G12(k)'1/l2k4

!G11(k),G22(k) in this region.
Axisymmetric large-scale EMHD flows.Let us now con-

sider the subset of solutions, for which the ion canoni
vorticity is identically equal to zero,V150, and the electron
vorticity Vk

2 is concentrated in the range 1!k!1/l of the
wave numbers, where the Green’s functionG22(k) is al-
most flat G22(k)'1. Practically this corresponds to th
condition 3,;k,;20. For EMHD model this is the long
scale region, whereV2 is proportional to the magnetic field
in the leading order. It should be emphasized that withV1

50 the velocityv1 of the ion component is not exactly zero
1-2
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however, it is much smaller than the velocityv2 of the elec-
tron component, as it becomes clear from consideration
the Eqs.~6! with p150. In the main approximation, th
Hamiltonian for the electron vorticity takes the very simp
form

Hl$0,V2%'
1

2E uV2u2dr , ~11!

in accordance with the fact that the energy of the system
concentrated mostly in the magnetic field. The correspond
equation of motion is local and essentially coincides with E
~1!,

Vt
25curl @curlV23V2#. ~12!

One of the remarkable properties of the equation~12! is that
in the case of axisymmetric flows, when

V2~r ,t !5v2~q,z,t !@ez3r #, ~13!

where q5(x21y2)/2, we have the exactly solvable Hop
equation for the functionv2(q,z,t) @8#,

v t
212v2vz

250. ~14!

The solution of the equation~14! at t.0 is constructed from
the initial functionv0

2(q,z) by the shift of each level con
tour v0

2(q,z)5w alongz axis on the value 2wt, that makes
possible breaking of the profile after some time. Not lo
before the moment of the singularity formation, the equat
~12! becomes nonapplicable. For correction, it is sometim
sufficient to add into the rhs of the equation~12! the only
linear dissipative term (e2n/Ms)DV2, which takes into ac-
count a finite electrical conductivitys @8#. In this case the
equation for the functionv2(q,z,t) looks as follows:

v t
212v2vz

25
e2n

Ms
~2qvqq

2 14vq
21vzz

2!. ~15!

In order to justify the neglect of dispersive effects, t
typical values of v2 should not be too largev2,
;e2n/2lMs'10e2n/Ms. With this condition the width of
the current sheet will remain several times larger than
dispersive lengthl. Otherwise, it is necessary to take in
account subsequent terms in the expansion of the Gre
function G22(k) on powers ofl2k2 ~we may neglect the
term 1/k2 as previously, sincek@1),

G22~k!'12l2k21~l2k2!21•••, ~16!

Hl$0,V2%'
1

2E V2
•~11l2D1••• !V2dr . ~17!

Let us consider the axisymmetric flows as~13!. It is use-
ful to note that in the absence of dissipation, as follows fr
Eqs.~7!, the dynamics of the functionsv6(q,z,t) possesses
the remarkable structure,

v t
61~dH* /dv6!qvz

62~dH* /dv6!zvq
650, ~18!
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of

is
g
.

n
s

e

n’s

where H* $v1,v2%5(1/2p)H m$v1@ez3r #,v2@ez3r #%.
Thus, each of the functionsv6(q,z,t) is transported by its
own, divergence-free in (q,z) plane, two dimensional veloc
ity field, the stream function of which coinciding with th
corresponding variational derivative of the Hamiltonian. T
same Poisson structure governs the ideal hydrodynamic
Cartesian plane@13#.

Using the expression for theD operator in (q,z) coordi-
nates,

D$ f ~q,z!@ez3r #%5~2q fqq14 f q1 f zz!@ez3r #, ~19!

we easily obtain the asymptotic expansion~for simplicity, we
write v instead ofv2 in the two following equations!

H* $0,v%5E v@q1l2~2]qq2]q1q]z
2!1•••#v dq dz

~20!

and the corresponding conservative equation of motion

v t12vvz12l2@2~2q2vqqz14qvqz1qvzzz!vq

1~8qvqq14vq1vzz12q2vqqq1qvzzq!vz#50,

~21!

where the nonlinear dispersive terms are explicitly written
the first order onl2. The dissipation can be taken into a
count as in the rhs of the Eq.~15!.

In the special case whenv2 is only slowly dependent on
the radial coordinateq, but strongly depends on the axia
coordinatez, the expansion ofG22(k) on the powers of
l2(kx

21ky
2) is appropriate,

G22~k!'
1

11l2kz
2

2
l2~kx

21ky
2!

~11l2kz
2!2

1••• . ~22!

Then in the leading order the equation of motion forv2(z,t)
becomes nonlocal integral differential,

v t
2~z,t !1vz

2~z,t !l21E
2`

1`

v2~j,t !e2uz2ju/ldj50. ~23!

For long-scale profiles ofv2 this equation is approximately
reproduced by Eq.~14!, but in addition, it is able to describ
changing of the steeping regime from explosiveuvz

2umax

;(t*2t)21 to exponentialuvz
2umax;expC(t2t* ) after the

width of the shock becomes smaller thanl. The exponential
growth of the maximum ofuvz

2u takes place on the fina
stage of shock evolution~without dissipation! since the inte-
gral operator in Eq.~23! makes the transport velocity forv2

smooth enough even for a very narrow shock.
Concluding remarks.Analogously, the helical flows can

be investigated, with

~V2!z5V~x cosKz1y sinKz,y cosKz2x sinKz,t !, ~24!

~V2!x52Ky~V2!z, ~V2!y5Kx~V2!z ~25!
1-3
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that are space-periodic alongz direction with the periodLz

52p/K. The general solution of Eq.~12! for this case can
also be obtained, since the equation of motion for the fu
tion V(u,v,t) is

V t12K2V~vVu2uVv!50. ~26!

This equation follows from the Hamiltonian

Hs$0,V%5
1

2E V@11K2~u21v2!1•••#V du dv. ~27!

Each level contourV(u,v)5W rotates with the individual
angular velocitydu/dt522K2W, that is the reason fo
shock producing. Higher-order corrections to Eq.~26! can be
derived similarly to Eqs.~19!–~21!. However, in this case i
is not possible to include the dissipation into consideration
the framework of single-function description by Eqs.~24!–
~25!, since magnetic diffusivity destroys helical shapes of
magnetic lines.

If we would like to escape the restrictionk@1, it would
be necessary to deal with the Hall MHD, the Hamiltonian
which is

H HMHD$V1,V2%5
1

2E uV2u2dr1
1

2E ~V11V2!

3~2D21!~V11V2!dr . ~28!

For axisymmetric flows we have

H
*
HMHD$v1,v2%5E ~v2!2qdqdz1

1

2E ~v11v2!

3Ĝ~v11v2!dqdz, ~29!

where the operatorĜ is defined as follows:
s

,

04740
-

n

e

f

Ĝf ~q,z![
1

4pE ~qq1!1/4FS ~z2z1!212~q1q1!

4~qq1!1/2 D
3 f ~q1 ,z1!dq1dz1 ,

F~A![E
0

2p cosw dw

AA2cosw
. ~30!

The equations of motion can be written in the form

v t
21~2v21Cq!vz

22Czvq
250, ~31!

v t
11Cqvz

12Czvq
150, ~32!

C5Ĝ~v11v2!. ~33!

Since the nonlocal operatorĜ possesses smoothing prope
ties, analogously to the usual ‘‘flat’’D21 operator, the stream
function C is smooth enough even where the functionsv1

and v2 have infinite gradients. Therefore, the effect of t
nonlocality, generally speaking, cannot overcome the t
dency towards the breaking of the functionv2 profile, at
least with moderate typical values ofC. We can suppose tha
with the initial data concentrated in the regionk;1, the
breaking takes place as the general case in the Hall M
model. As concerns the transition to the limit of usual MH
on small k!1, and v2!Cq , uv11v2u!uv1u,uv2u, in
this case the question about breaking remains subtle
needs additional investigations.
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